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Two-stream CNN Multi-Siamese Constrastive Loss
Introduction
« Spatial stream: takes RGB pixel values of « Siamese CNN: The training tries to minimize
- Usage of computer vision (camera) is increasing each frame (e.g., 16x12x3) the embedding distance between a positive pair
fast with various applications such as - Temporal stream: takes 10-frame while maximizing the distance between a
autonomous vehicle, drone, robots, wearable concatenated optical flow values (e.g., 16x12x20) negative pair.

devices, smart home, and so on.
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256 *m: margin, B: the batch of LR examples being
used, ¢z and 7: the indices of pairs in the batch.

« Will lead to serious privacy concern. Once
high-resolution data is on CPU or GPU
memory, hackers may snatch the data.

Objective
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« Activity recognition with anonymized video
data (e.g., 16x12).

= Assume that high-resolution training data are
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Experiment Results

Table 1: Classification accuracies (%) measured with the Table 3: Comparing our approach with previous state-of-the- Table 4: Comparing our approach with previous state-of-

16x12 HMDB dataset [Kuehne et al., 2011]. Reporting the arts on the 16x12 HMDB dataset. the-art results reported on the 16x12 DogCentric activity
mean and standard deviation of each method. dataset.
Approach Accuracy
Approach One-Stream | Two-Stream 3-layer CNN [Ryoo et al., 2017] | 20.81 % Approach Accuracy
Baseline CNN  25.08 £ 0.40 31.50 £ 0.30 ResNet-32 [He et al., 2016 22.37 % [washita et al. [Iwashita et al., 2014] 46.2 %
Data augmentation 25.17 & 0.24 35.34 + 0.41 PoT [Ryoo et al., 2015] 26.57 % [TF |Wang and Schmid, 2013 10.0 7%
Our multi-Siamese 26.21 & 0.27/ 37.70 £ 0.17 [SR [Ryoo et al., 2017] 28.68 7 PoT [Ryoo et al., 2015 64.6 %
Table 2: The average performance of classification accu- Two-stream [Chen et al., 2017] 20.2 7% [SR [Ryoo et al., 2017] 67.36 %
racies (%) measured with the 16x12 DogCentric dataset Our two-stream CNN with pyramid 31.50 % Our two-stream CNN with pyramid  61.25 %
Twashita et al., 2014] Ours 37.70 % Ours 69.43 %
Approach One-Stream | 'Two-Stream
Baseline CNN 53 05 61 25 Our approach runs in real-time (~50 fps) on a Nvidia Jetson TX2 mobile GPU
Data augmentation  57.61 609 card with our Python code using the TensorFlow library.

Our multi-Siamese 59.08 69.43




