
Extreme Low Resolution Activity Recognition with Multi-Siamese Embedding Learning
(AAAI 2018 accepted)

Kiyoon Kim1,2

1EgoVid Inc., Ulsan, South Korea; 2Ulsan National Institute of Science and Technology, Ulsan, South Korea

Introduction

•Usage of computer vision (camera) is increasing
fast with various applications such as
autonomous vehicle, drone, robots, wearable
devices, smart home, and so on.

•Will lead to serious privacy concern. Once
high-resolution data is on CPU or GPU
memory, hackers may snatch the data.

Objective

•Activity recognition with anonymized video
data (e.g., 16x12).

•Assume that high-resolution training data are
available from public sources. (i.e., YouTube)

•Take advantage of the fact that a single
high-resolution video can generate multiple
low-resolution videos from slightly different
transforms.

LR videos with different transforms

Two-stream CNN

• Spatial stream: takes RGB pixel values of
each frame (e.g., 16x12x3)

• Temporal stream: takes 10-frame
concatenated optical flow values (e.g., 16x12x20)

• Temporal pyramid: applies two-stream
models above for each frame, and takes
temporal max pooling with different intervals

Multi-Siamese Constrastive Loss

• Siamese CNN: The training tries to minimize
the embedding distance between a positive pair
while maximizing the distance between a
negative pair.

Lsiam(θ) = B∑
(i,j)
y′(i,j)||xi − xj||22+
(1− y′(i,j)) max(0,m− ||xi − xj||2)2

* m: margin, B: the batch of LR examples being
used, i and j: the indices of pairs in the batch.

L(θ) = λ1Lsiam(θ) + λ2Lclass(θ)

Two-stream CNN + 
Temporal pyramid

Embedding space

xik

xil

Loss

Two-stream CNN + 
Temporal pyramid

Shared 
parameters (ᷔ)

Two-stream CNN + 
Temporal pyramid

Embedding space

xik

xj

Loss

Two-stream CNN + 
Temporal pyramid

Shared 
parameters (ᷔ)

(a) Contrastive loss for positive pairs

(b) Contrastive loss for negative pairs

Vik

Vil

Vik

Vj

Margin (m)

• Multi-Siamese CNN: 2·n branches sharing
the parameters for the embedding and the
classifier learning.

Lmulti(θ) = ∑
i∈B


∑

(k,l)∈B1
||xik − xil||22 + max(0,

n2 ·m2 − (∑
k

∑
j∈B2
||xik − xj||22))



L(θ) = λ1Lmulti(θ) + λ2
∑Lclass(θ)

Experiment Results
Table 1: Classification accuracies (%) measured with the
16x12 HMDB dataset [Kuehne et al., 2011]. Reporting the
mean and standard deviation of each method.

Approach One-Stream Two-Stream
Baseline CNN 25.08 ± 0.40 31.50 ± 0.30

Data augmentation 25.17 ± 0.24 35.34 ± 0.41
Our multi-Siamese 26.21 ± 0.27 37.70 ± 0.17

Table 2: The average performance of classification accu-
racies (%) measured with the 16x12 DogCentric dataset
[Iwashita et al., 2014].

Approach One-Stream Two-Stream
Baseline CNN 53.05 61.25

Data augmentation 57.61 68.09
Our multi-Siamese 59.08 69.43

Table 3: Comparing our approach with previous state-of-the-
arts on the 16x12 HMDB dataset.

Approach Accuracy
3-layer CNN [Ryoo et al., 2017] 20.81 %

ResNet-32 [He et al., 2016] 22.37 %
PoT [Ryoo et al., 2015] 26.57 %
ISR [Ryoo et al., 2017] 28.68 %

Two-stream [Chen et al., 2017] 29.2 %
Our two-stream CNN with pyramid 31.50 %

Ours 37.70 %

Table 4: Comparing our approach with previous state-of-
the-art results reported on the 16x12 DogCentric activity
dataset.

Approach Accuracy
Iwashita et al. [Iwashita et al., 2014] 46.2 %

ITF [Wang and Schmid, 2013] 10.0 %
PoT [Ryoo et al., 2015] 64.6 %
ISR [Ryoo et al., 2017] 67.36 %

Our two-stream CNN with pyramid 61.25 %
Ours 69.43 %

Our approach runs in real-time (∼50 fps) on a Nvidia Jetson TX2 mobile GPU
card with our Python code using the TensorFlow library.


